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An implicit scheme is developed for nonlinear heat transfer problems. The scheme
possesses a number of properties. The most notable are the second-order accuracy
in both space and time, the conservative feature, quick damping of numerical errors
when the size of time step is large, the iterative approach and fast convergence,
the accurate treatment for nonlinearities and different kinds of material, and the
capability to handle a system composed of more then one kind of material, which have
dramatically different thermal diffusivities. The scheme may be easily vectorized.
Numerical examples are presented to show these featugases Academic Press
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1. INTRODUCTION

An extensive amount of literature exists on numerical methods for the solution of he
transfer (see, e.g., [13, 21, 24] and references therein). Each method has its advant:
depending on the nature of the physical problem to be solved. In the point of view
energy conservation, a numerical scheme may be either conservative or nonconserva
By conservative, it is meant that a numerical solution satisfies the energy conservation |
for each grid cell and for any assembly of grid cells. In terms of accuracy, schemes may
divided into first order, second order, and higher order ones. If time accuracy is importal
second order or higher order schemes are preferred. But, normally, a scheme accurate r
than second order is very complicated to formulate and expensive in CPU time. Therefo
second-order schemes have become practical for time-dependent problems.

Schemes may also be divided into explicit and implicit methods. An explicit scheme
for example, the forward Euler scheme, is simple. But, the size of time step is limited by
stability condition which is normally much smaller than the required accuracy. Therefor
an explicit scheme may be inefficient for some of problems, especially when the therm
diffusivity in a problem varies significantly. On the other hand, in implicit schemes, the
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size of time step is not limited by any stability condition, and therefore may be change
according to the requirement of a problem itself. But implicit schemes normally involv
solving a large set of algebraic equations at each time step.

There are two approaches to solve the large set of algebraic equations, i.e. direct
proach and iterative approach. The direct approach for solving linear algebraic equatic
are presented in all traditional courses of linear algebra (see, e.g., [3]). Generally, ex
solvers may not be recommended even for linear problems in two and three dimensic
because normally an exact solver is expensive in CPU time and is difficult to vectorize. F
the iterative approach, a significant question is whether an iterative process will actua
be successful and will lead to the solution of the algebraic equations. An important relat
aspect is the rate of convergence. Several procedures are available to analyze converg
for some simple situations (see, e.g., [7, 8]). The nonlinearity is another headache in
implicit scheme. Newton iteration is very expensive in CPU time in an implicit scheme be
cause there are a large set of unknown variables. Iterative methods for a class of nonlir
difference schemes have been discussed in [23].

Two typical implicit schemes are the backward Euler scheme and the Crank—Nicolst
scheme [1]. The backward Euler scheme is first order accurate. Numerical errors in 1
backward Euler scheme undergo quick damping for large time steps, and therefore, i
very useful for steady state problems. Although the Crank—Nicolson scheme is second-or
accurate, numerical errors do not damp out for large time steps.

In this paper, we will develop a numerical scheme for nonlinear heat transfer in mult
dimensions. The scheme will have the following features: second-order accurate in b
space and time, stable for any size of time step, conservative, iterative, accurate in the tr
ment for nonlinearities and different kinds of material, and capable of handling a syste
composed of multikinds of material. The development of a numerical scheme with the
features is mainly motivated for two kinds of problems. One is the numerical treatment f
radiative hydrodynamics [17], and the other is the heat transfer involved in laser fusion [1
For these kinds of problem, the temporal accuracy is important because the evolution ¢
physical system with time is what we have to find out. Since the size of a time step in
explicit scheme is dictated by the maximum of the thermal diffusivity in a system no matte
whether or not the local phenomena is important to the dynamics, implicit schemes stal
for any size of time step are preferred for the problems in which thermal diffusivities eithe
in different regions or at different instants are significantly different. Since most problems |
radiative hydrodynamics and laser fusion are nonlinear, a sufficiently accurate treatment
the nonlinearity is required. In laser fusion, the thermal diffusivity in a pellet is dramatically
different from that in its surroundings. A numerical scheme should be able to handle tl
thermal diffusivity which varies dramatically with space coordinates.

The time discretization to be presented in this paper is adopted from the implicit—explic
hybrid schemes [20, 25] for the Euler equations in gas dynamics. Resolving shock fronts
one of major difficulties in gas dynamics, which was handled through an approximate Ri
mann solver. The schemes in [20, 25] are good only for hyperbolic systems of conservati
laws, and only a single kind of material is considered in [20, 25]. Since the Euler equ
tions describe nonlinear wave interactions, a multicolor relaxation, instead of the multigr
method, has been used in [25] for the fast convergence of iterations.

The plan of this paper is as follows. In the second section the difference equations ¢
derived. An iterative solver for the difference equations is described in the third sectio
The implementation of a multigrid method for the scheme is presented in the fourth sectic
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Numerical examples are given in the fifth section to demonstrate the features mentior
above. The final section is the conclusion and a brief discussion about our approach.

2. DIFFERENCE EQUATIONS

Suppose a system of heat transfer is composed of multikinds of material, each of whi
occupies a part of asimulation domain. The material in different regions may be dramatica
different in thermal diffusivity. In this section, we will derive the formulations for the two-
dimensional situation. The extension to the three-dimensional situation is straightforwal

We will solve the heat transfer problem:

% — V. [k(MT)VT] =s(T). Q)

HereT is temperatureg is thermal diffusivity, and(T) is a thermal source. Equation (1)
should be completed by boundary and initial conditions. Initial and boundary conditior
are problem-dependent. Two typical boundary conditions are those for fixed temperati
and fixed heat flux at a boundary of a simulation domain. At the interfaces between tv
kinds of material, temperature and heat flux are continuous, but the thermal diffusivi
and spatial derivatives of temperature may be discontinuous across the interfaces. In
paper, we present only the formulations for Eq. (1), but our approach to be presented in t
paper may be directly applied to more general equations for heat transfer problems. We \
discuss the extension at the end of this paper.

Consider a numerical grigk;, y;} in a two-dimensional domain. Integrating Eq. (1) in a
grid cell (x;, xi+1) and {;, y;j+1), and over a time step (@t) yields

At _ _ At _ _ _
TN =To+ H(QXW_QXE)‘I'A_y(QyS_QXN)+SAt. (2)

HereTo andTN are cell-averaged values ®fatt = 0 andt = At, respectivelyf,w and

Oxe (or, gys andgyn) are the time-averaged values of a flux at cell-interfaces of the cell t
the west and east (or, to the south and north), respectaiyhe time- and cell-averaged
value ofs. They are defined as

1 Yi+1 [Xi+1 . 1 At pYje1 pXig1
TN= / / T(x,y; At)ydxdy, SE—/ / / sdxdydt
AXAY Jy, X AtAXAY Jo Jy, X
_ At rYin 1 Yi+1
qXW_FAy /y Ox(Xi,y; ) dy dt, qXE_rAy . Ox(Xi+1, y; ) dy dt
3
_ At pXiv1 _ At rXig1
WS= Ay /O ’ Qy(x, yj; ydxdt gyn= ATAX /0 ’ Oy (X, yj+1; ) dx dt,
4
andg = —«(T)VT. We should mention that Eq. (2) is exact because no approximatior

have been involved yet.
If the time-averaged flux in Eq. (2) is replaced by a value-aD (or att = At), the ap-
proximation results in the forward (or backward) Euler scheme which is first-order accura
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in time. If the time-averaged flux is replaced by their averaged values-d andt = At,
the result is the Crank—Nicolson scheme, which is second-order accurate in time. As sta
before, numerical errors in the Crank—Nicolson scheme do not undergo damping when
size of a time step is large, although the scheme is unconditionally stable. The reason
the absence of damping is that when the size of a time step is very large, the solution sha
be independent on the initial condition of a problem, and the solution is determined only |
the boundary condition. But, in the Crank—Nicolson scheme, the flux calculation is bas
on the values at = At, as well as initial values.

In order to introduce quick damping for numerical errors within the framework of seconc
order accuracy, we introduce an additional time level At /2. Under second-order accu-
racy, we approximately evaluate the time-averaged flixatAt /2, and Eq. (2) becomes

(ays— Oen) +s™At. (5)

At At
™ =To+ B(QXHW—CIXHE) + Ay

Heres =s(T"), TH is the cell-average of att = At/2, and

1 [ 1 [V
H = — : A 2 H = _/ : A 2 :
qXW Ay /y\j q)( (XI ) y» t/ ) dy’ qu Ay v qx(X| +1, y, t/ ) dy (6)

1 Xi+1

H
qu

1 Xit+1
ay(x. Vjs At/2) dx, o = — / Ay(X, v s At/2)dx. (7)

For the first half-time step, through the similar procedure for Eq. (2), we have

At At
T =To+ —— (G — Oty Ovs — Oin) + ST At )

2AX Qxw — qu) + Ky (qu_ OxN

NI =

Heres™ is the time- and cell-averaged valuesodver the first half-time step, arggl,, and
ke (or, ajs andqyl) are the time-averaged values of the flux over the first half-time step
and they are defined as

4 2 At/2 ryia dvdr g 2 A2 pYin v

= Ay iyt = . t
e AtAY Jo /yj Ox(Xi, y; ydydt o ALAY o /yj Ox(Xi+1, y; ) dy dt
(9)

i 2 PAL/2 pXig1 1 2 PAL/2 pXig1
Qys= m/o ’ gy(X, yj; t)ydxdt quEm/o ' Oy (X, Yj+1; ) dx dt

(10)

The time-averaged flux involved in Eq. (8) may be approximately calculated through &
interpolation in time. As stated before, an approximate calculation for the time-averag
flux must not, even partially, depend on initial information when a time step is very large
Our interpolation for the time-averaged flux is uniquely determined by values=ant
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andt = At/2. Therefore, the time-averaged flux in Eq. (8) is approximately obtained:

3 1 3 1

Thw ~ éq;w - Eq;\‘w’ Ore ~ Eq?E - éq;\lE’ (11)
3 1 3 1

Oys ~ Eq;‘s— qus» Oyn ~ quN - quN' 12)

Here, gy Gee. dy's, @ndayy have the similar definitions as Egs. (6), (7), except that they
are evaluated dt= At instead ofAt/2.

In order to give specific forms of the flux at interfaces, we write the fluxas— VK (T).
If the material in the current cell is the same as that in its neighboring cells, then spat
derivatives of temperature are continuous across interfaces between grid cells, and there
we can use a center difference to approximately calculate the flux at four interfaces. F
example,

A~ o [K(TH) = KT (13)
X

Here, the subscrigt refers to the left cell to the current cell, afid' is the cell-averaged
value in the left cell at = At/2. Since the material in a cell may be dramatically different
fromthatinits neighboring cells, the derivative of temperature is no longer continuous acrc
an interface. Therefore, Eq. (13) is not true at an interface between two kinds of materi
Consider the flux at an interface= x; between two kinds of material and suppose the
temperature at = x; is T1. Values of the flux calculated from two sides of the interface
are approximately

2 2
O~ = [KU(T) = Ku@H]L gl ~ S IKMH -KTHL - (14)

Here, the functiorK (T) is for the material to the right af;, while the functionK (T)
is for the material to the left of;. Two functionsK (T) andK_(T) may be dramatically
different. Since!_ = g/, , we may findT," through the equation:

KT + Ko = KT + K (TH).

Generally, the temperature at the interfatg, may be obtained numerically for givai!
andTH, althoughT is a linear function off * andTH for linear problems.
Writing K (T) in the form of<(T) T and writing the equation above in the form

H_ 1 H H
T = s eam KT T KT

we may write the fluxgtl, in the form

= o L1l K (TF) = (14 af KT, (15)

Here,a!! is defined as

w_ RUTI) —R(TH)
T R T +R(THY
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Equation (15) is the general form for the flux. Similarly, we may write the flux at other thre
interfaces:

a3t = 5y (1= o) Ko (T8) = (-4 o KT, e
k=~ (1~ ol Ka(TH) = (L+ oK (T)], )
b =~ (1 of K (TF) — (L+ oK (T)]. (19

Applying the flux above in Eqg. (5), we obtain a set of nonlinear difference equations:

™ = T, 4+ D", (19)
3 1

TH =T+ >D" — =DM, 20

0+4 ! (20)

Here,DY is defined as

At
D" = 1z (1= ol KL(T) = (Lo )K(T™) + (1~ o Kr(T)
— (L aR) KM +sat+ o )2[(1 af ) Ke(Tg')
—(I+af) KT+ (1-of )Kr (T') = (4o ) KT, (21)

andDN has the same form as the equation above if the superstrigpreplaced byN. If
there is only one kind of material, thesj', o, ', ande X vanish. For the steady state of
a single kind of material, Egs. (19), (20) reduce to

2+ g7 ) K = 2l KT+ KTl + 5 [K (To) + KT (@22
which turns into the usual Poisson solver if the system is linear.

Since we have used the linear interpolations in Egs. (11), (12), (14) in both space a
time, Egs. (19) and (20) are second-order accurate in both space and time. In Egs. (:
(20), we have not introduced any approximation for the nonlinearit 6f) and our
interpolation equations (11), (12), (14) do not cross any interface between two kinds
material. Therefore, our treatment for the nonlinearity and different kinds of material i
accurate. The numerical solution we are looking for is the solution of the difference equatio
(19), (20).

We should mention that the extra half-time step and the interpolation based /@n
and At were first introduced in [20] for gas dynamics and are iteratively implemente
in [26]. Compared to two typical implicit schemes, the backward Euler and the Crank
Nicolson schemes, the number of unknown variables has been doubled in Egs. (19), (2
But, Egs. (19), (20) have advantages we need. As we mentioned before, the backward E
scheme is only first-order accurate in time, and the numerical error in the Crank—Nicols
scheme do not damp for large time steps. The difference scheme, the set of Egs. (19), (
provides quick damping for numerical errors for large time steps, as demonstrated in [2.

Actually, three (or more) time-level implicit schemes have been developed in ord
to reach high-order accuracy. For example, the three time-level implicit Dupont schen
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[10, 16] may produce excellent results for nonlinear problems. The three-level scheme
Lees [6] does not require iteration over a time step to handle nonlinearities. Since the fl
calculation in the previous three (or more) time-level implicit schemes depends on initi
data, numerical errors do not undergo damping when the size of the time step is very lar

3. ITERATIVE SOLVER

Equations (19), (20) may be iteratively solved. A straightforward procedure is to evalua
the right-hand sides (RHSs) of Egs. (19), (20) using an initial guess for cell-averaged valt
of temperature at= At/2 andt = At. Thus, we obtain improved temperaturée at At/2
andt = At through Egs. (19), (20). Unfortunately, this iterative procedure dose not converg
whenk At/(Ax)? is larger than unity, because through each iteration numerical errors |
TN are increased by a factor larger than unity wkext /(Ax)? is larger than unity.

The nonlinearity in Egs. (19), (20) is another headache. One of typical approaches for n
linearities is to use Newton iteration. But the calculation for Jacobi coefficients is extreme
time consuming if the number of unknown variables is large. Another typical approach
to linearize Eqgs. (19), (20) around the initial temperature. If the linearization were use
numerical errors should not undergo a damping for large time steps, because calculatiol
the flux is based on the initial temperature in the linearization.

Our approach is as follows: We write Eq. (15) in the form

1
Ghw = oy (1= o) [KL(T) = KL@™] + (1= o) Ke (T = (14 o) KT}

1 -
= L= )R (T = TH) — g TH]. (23)
X
Here ! is the Taylor expansion of{ (T) — K (TH)]atT = T divided by(TH —TH),
and

o = 1+ )RTN — (L—al oL (™.

Generally,«f* andg{' are functions of botir," and TH. The form of the functiorg"
depends on the properties of the material on both the current and left cells. Equatic
(16)—(18) may be similarly rewritten. We should point out that we have not introduced ar
approximation in Eq. (23), and therefore, our treatment for the nonlinearity and for differel
kinds of material is completely nonlinear.

Using these expressions for the flux, from Egs. (19), (20) we obtain

TN+ 8HTH = T + QM (24)
1 3 3 1
—ZﬂNTN+<1+ ZﬁH>TH =T0+ZQH—ZQN- (25)

Here,p" andQ" are defined as

[(1—of )& + o' + (1 — R )RE + R ]

+——[(1—ag)&f + 95 + (1 —of )&T + 07 (26)
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At - -
QM = (A—X)z[(l—“E)KLHTLH + (1—ap)RR T

+ (ﬁ;)z[(l—ag)&BHT; + (1—of )i T +s"At, (27)

andgN andQN are exactly the same as Egs. (26), (27), except for the superscvitich
should be replaced by for gN andQN. Equations (24), (25) may be solved ol andT ":

TN=i{<1—iﬂH>To+QH+‘11,3HQN}» (28)
™ = /l; KH %ﬂN>To+ %(3+ﬁN)Q“ - %QN} : (29)

Here A is defined as
1
A=1+ Zﬂ”(3+ﬂN)-

Our iterative procedure is as follows: Initially we guess the cell-averaged values of tt
temperature at = At andt = At/2 and evaluate the RHSs of Eqgs. (28), (29). The
improved solution is obtained through Egs. (28), (29). If the improved solution does n
satisfy the accuracy requirement, we may consider the improved solution as an init
guess to continue the iteration. This primitive iterative approach is called the Gauss—Sei
approach. Numerical experiments show that this iterative procedure converges. We v
show the convergence rate in the section of numerical examples.

4. MULTIGRID METHOD

Inthe Gauss—Seidel approach, information is carried over only one grid cell through ea
iteration, and therefore the convergence is very slow. In order to speed up the converger
we divide all grid cells into two sets which are staggered with each other, called red ai
black sets. If we implement Eqgs. (24), (25) for the red set first, then for the black setin ea
iteration, the number of iterations may be reduced to half for a given required accura
because the information is carried over two cells through each iteration.

From numerical analysis and experiments for iteratively solving Eq. (1) for a constal
thermal diffusivity, it is known that numerical errors with high frequencies are efficiently
killed in the first few iterations, and errors with low frequencies remain even after man
iterations (see, e.g., [21]). These phenomena indicate that we may use a coarse grid to
low frequency errors and a fine grid to kill high frequency errors; i.e., we may use th
multigrid method to speed up the convergence.

The multigrid method have been developed for many years. Fedorenko [4] and Bachva
[5]formulated multigrid algorithms for the standard five point finite difference discretizatior
for the Poisson equation and the general linear elliptic partial differential equations. TI
paper by Brandt [9] is one of the earliest in which practical results were reported. At fir:
there was much debate and scepticism about the true merits of the multigrid method. T
led researchers to the development of more transparent convergence proofs (see, e.g.,
16, 18] for a survey of theoretical development). Although rate of convergence proofs of i
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multigrid method are complicated, their structure has now become more or less stand
and transparent. The multigrid method for discontinuous coefficients in some situatio
have also been studied (see, e.g., [14]).

A typical algorithm of the multigrid method starts from a coarse grid. After a few itera-
tions, the grid points in each direction are doubled, resulting in a fine grid. Then another
of a few iterations are implemented in the fine grid with the initial guess obtained from th
solution on the coarse grid. Therefore, low frequency errors are significantly killed in tf
coarse grid, and high frequency errors are significantly killed in the fine grid. We shoul
point out that, even if we start with a very accurate solution in the coarse grid, low fre
guency errors still remain after many iterations in the fine grid. One efficient approach f
killing these remaining low frequency errors is to go back to the coarse grid and impleme
another set of a few iterations on the coarse grid. Since the coarse grid is more efficient
a smoother solution, we may work on the residue of the solution, instead of the soluti
itself on the coarse grid.

Suppose thaEN (or C") andRN (or R") are the error and residue on the fine grid, i.e.,

C=T-T, (30)
RN=1N_—T1,- D", (31)
3 1
RH=T1TH_—1,— D" + ZDN. 32
04+4 (32)

Here, T® is the exact solution of Egs. (24), (25) on the fine grid. Then, we solve th
following two equations fo€" andCN on the coarse grid:

cN 4 picH = QH + RV, (33)
1 3 3 1
—ZﬂcNCNJr<1+ Zﬁ3>CH =70 - 7Qc +R". (34)

If the thermal diffusivity for each kind of material is a constant, tjsgh gY, Qf, andQY

in Egs. (33), (34) are exactly the samegds, gN, QH, andQN in Egs. (24), (25), except
for TH, T, T&!, andT in Egs. (24), (25), which are replaced®y', CK, C{, andC} in
Egs. (33), (34). A few iterations of Egs. (33), (34) on the coarse grid will give very accurat
solutions forCN andCH, sinceCN andCH are smooth and the vanishi@d' (orC")is a
reasonable initial guess. After a few iterations @Y andC" on the coarse grid, we may
correct the solution on the fine grid:

TN =TN-CN, (35)
TH=TH _CH. (36)

This procedure is often called a “coarse grid correction.” We should mention that the soluti
after a coarse grid correction always contains large high frequency errors for which a f
iterations on the fine grid are needed.

For nonlinear problemsy|’, #", andg!! in 8" andQ" depend on temperatufig’ and
TH. Strictly speaking, Egs. (33), (34) are no longer true for nonlinear problems. But, w
should realize that a coarse grid is used only for killing low frequency errors, but not for t
solution itself. After the coarse grid correction, we still have to go back to the fine grid fo
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the solution. Therefore, equations we use in the coarse grid for the coarse grid correction
not necessarily have to be exact, as long as the coarse grid correction may speed up the
vergence. Therefore, even for nonlinear problems, we still use Egs. (33), (34) for the coa
grid correction, in whiche!, €', andg!! are all evaluated at the solution on the fine grid.
Numerical experiments show that the coarse grid correction based on Egs. (33), (34) wo
for nonlinear problems even for systems composed of the more than one kind of mater
We will show the convergence rate in the next section.

In the multigrid method described above, we have to transfer cell-averages between f
and coarse grids. For the transformation from a fine grid to a coarse grid, by definition v
only have to add appropriate cell-averages defined on the fine grid together in order to f
cell-averages on a coarse grid. For the transformati€@™oandCH from a coarse grid to
a fine grid, the simplest interpolation is to assume no internal structures in the coarse g
i.e.,CN andCH are piecewise constants on the coarse grid. From this assumption, we m
easily find the values &N andC" on the fine grid, which are used in Egs. (35), (36), from
their values on the coarse grid. We may also assume a linear (or parabolic) internal struct
of CN andC" on a coarse grid, and the internal structure may be determined by loc.
information ofCN andC". The internal structure will result in more accurate estimates of
CcN andC" on the fine grid. But, the difference in the valuesdt andCN on the fine grid
between the two approaches, i.e. piecewise constant and piecewise linear (or parabo
is dominated by high frequencies, and the high frequency difference will be immediate
killed in the first few iterations on the fine grid. Therefore, there will be no difference ir
the convergence rate between the two approaches. We have tested both interpolations
found no difference in the convergence rate.

Now we would like to discuss the conservative feature. After finding a sufficiently accurat
solution for T through the iterations described above, we substitute the solution int
Egs. (15), (16) to find the flux across each interfagg, andqys, through Egs. (15), (16).
Finally, we follow the conservation law, Eq. (5), to update the temperature.

5. NUMERICAL EXAMPLES

The scheme developed in the previous sections has been tested for some heat trar
problems, a few of which will be presented here to illustrate the features of the scheme. |
the multigrid method, one iteration in a fine grid may need many iterations in coarse gri
both for a better initial guess and for the coarse grid correction. Therefore, it is necessary
show the convergence rate in terms of both the number of iterations used in the fine grid ¢
the actual CPU time used. In all numerical examples below, except the last one, the init
condition is a constant temperaturex, y) = 0.25, simulations are performed on a1
domain, 128x 128 grid cells are used, afd=1, T =2, T = 3, andT = 4 are assigned
at the left, top, right, and bottom boundaries, respectively, as boundary conditions, unle
specified otherwise.

In order to demonstrate the correctness of our algorithm through a comparison with
exact solution, we choose a plate with temperature-dependent diffusiiity= 1+ T.

The simulation domain is & X < 1, and the temperature is 0.1 and 1.0xat= 0 and

x = 1, respectively. The solid line in Fig. 1 is the exact solution of the steady state [2
The points marked withd,” “ x,” and “+” in Fig. 1 are our numerical solutions after one
time stepAt = 100. The ©” points are obtained when eight grid points are used in the
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FIG.1. A comparison between numerical solutions and the exact solution. The solid line is the exact solutic
The “o” points are obtained when eight grid points are used in the rangex0< 1, the “x” points are obtained
when 16 grid points are used, and thg"points are obtained when 32 grid points are used.

range O< x < 1, the “x” points are obtained when 16 grid points are used, and e “
points are obtained when 32 grid points are used. Our numerical solution has an excell
agreement with the exact solution.

The second example, in which the thermal diffusivity is a constaat 1, is to test
the accuracy of the scheme. The dashed lines in Fig. 2 show four solutions of the ten
erature along the liney=05 at t=0.1 obtained for four different simulations.
The four simulations are different only in the sizes of time step used, whickAtre
0.1, 0.05,0.025, 0.0125. The corresponding parameterA2 /(AX)?, in the four simula-
tions is 3276.8, 1638.4, 819.2, and 409.6, respectively. The solid line in the figure is tl
solution obtained when the size of time steyt, = 0.001, is used, which is considered as
a reference. The dashed line obtained from a larger size time step is further away from
reference. Actually, the solutions obtained through= 0.025, 0.0125 coincide with the
reference.

As an example, we would like to show the convergence of numerical solutions for
nonlinear time-dependent probleatT) = 1+ 0.1T* 4 0.01T 8. Figure 3 shows the profiles
alongy = 0.5 of the solution at = 0.05 when different time steps are used. The solid line in
Fig. 3 is obtained when the time steyp = 10~4, which is considered as an “exact solution,”
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FIG. 2. The solution at = 0.1 obtained from four simulations. The four simulations are different only in
the size of time steps used, which @& = 0.1, 0.05, 0.025, and 0125. The solid line is considered an “exact”
solution. The dashed line obtained from a larger time step is further away from the exact solution. The solutic
obtained throught = 0.025 0.0125 already coincide with the exact solution. The parametext 2(Ax)?, in
the four simulations is 3276.8, 1638.4, 819.2, and 409.6, respectively.

and two dashed lines in Fig. 3 are obtained whdn= 0.05, Q025 are used. The solution
obtained whemt = 0.025 almost coincides with the exact solution.

In the nest set of three examples, we would like to examine the convergence rate for
different approaches mentioned in the last section. We start with a linear prebler.
The time stepAt = 1.0. The parameten@At /(Ax)? is 3.2768x 10% in the simulation, and
2k At/(AX)? < 1isthe stability requirement in the forward Euler scheme. The broken line
in Fig. 4 show the maximum residuB andR", as a function of the number of iterations
and the CPU time for the Gauss—Seidel method. It is clear that only the first few iteratiol
are efficient in killing numerical errors, and the remaining errors need an extremely lar
amount of iterations. The dashed lines in Fig. 4 give the result obtained through the re
black method. As stated before, error information is carried over two cells in the red—blas
method, while it is carried over only one cell in the Gauss—Seidel method. Therefore, f
a given maximum of residue, the number of iterations required in the red—black method
about a half of that required in Gauss—Seidel method. The solid lines in Fig. 4 are obtain
through the multigrid method. Compared to the red—black and Gauss—Seidel methods, c
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FIG. 3. A convergence study for(T) = 1+ 0.1T* + 0.01T®. The solid line is obtained when the time step
At = 1074, which is considered as an “exact solution,” and two dashed lines are obtainedwwken.05, 0.025
are used.

a small number of iterations, or a small amount of CPU time is needed in the multigri
method. The unit used for the CPU time in Fig.4 is the CPU time used for one iteration
the red—black method.

The third example is a problem in which there are two kinds of material. In the regio
0.25<x <0.75and 025< y < 0.75, k = 10%, whilex = 1 in the other part of the simulation
domain. The time stept = 0.02. The maximum value of the parametar/% /(Ax)? is
6.5536x 10° in the simulation. The dashed lines in Fig. 5 show the maximum of residue &
a function of the number of iterations and CPU time used in the red—black method, and 1
solid lines in Fig. 5 are obtained through the multigrid method. Figure 6 is the temperatu
after one time step obtained from our scheme.

The fourth simulation is for a nonlinear probleniT) = 1 + 0.1T4 + 0.01T® for a
single kind of material. The time steft = 0.015. The maximum value of the parameter
2k (TH)At/(Ax)?is 3.28206x 10% in the simulation. The lines in Fig. 7 show the maximum
of residue as either the number of iterations or the CPU time used to reach the residue.
dashed lines are obtained from the red—black iteration, and the solid lines are obtained fr
the multigrid method. Figure 8 gives the solution after one time step.
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FIG. 4. The convergence rate for a linear problesit. = 1.0. 2« At/(Ax)? is 32768 x 10*. The broken,
dashed, and solid lines are respectively obtained from Gauss—Seidel, the red-black, and the multigrid meth
The CPU time is measured in terms of the CPU time used for one iteration in the red—black method.
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FIG. 5. The convergence rate for a system composed of two kinds of material.L0000 in the region
0.25 < x < 0.75and 25 < y < 0.75, andc = 1 in the other regionAt = 0.02. The maximum value
of 2k At/(Ax)? is 6.5536 x 1CP. The dashed and solid lines are respectively obtained from the red—black an

multigrid methods.



FIG. 6. The solution for temperature in a system composed of two kinds of materialkwith 1, and
« = 10,000 after one time stepat = 0.02.
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FIG. 7. The convergence rate for a nonlinear problertiT) = 1+ 0.1T* + 0.01T®, At = 0.015. The
maximum value of At /(Ax)? is 3.28206x 10*. The dashed and solid lines are respectively obtained from the
red-black and multigrid methods.
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FIG. 8. The solution for temperature for a nonlinear problanir) = 1+ 0.1T* + 0.01T® after one time
stepAt = 0.015.

The fifth simulation is for a nonlinear problem in which there are two kinds of material
In the inner part of the simulation domain28< x < 0.75 and 25<y <0.75,«(T) =
10*+100T 2, and in the outer part(T) = 1+0.1T4+0.01T5. The time step i\t = 0.01.
The maximum value of the parameter(@ 1) At /(Ax)?is 3.37728x 10° in the simulation.
The lines in Fig. 9 show the maximum residue as a function of either the number of iteratio
or the CPU time used to reach the residue. The dashed lines are obtained from the red—b
method, and the solid lines are obtained from the multigrid method. Figure 10 gives tl
solution after one time step.

Our last example is for the heating of a nonlinear system which is composed of thr
kinds of material. The simulation is performed in & 1 domain containing 258 256 grid
cells. In the inner part,.875 < x < 0.625 and B75< y < 0.625,x(T) = 10° 4+ 100T?;
in the middle part, @5 < x < 0.75 and 025 < y < 0.75 outside the inner pant(T) =
10+ 0.1T8; and in the remaining outer pa(T) = 1 + 0.1T* + 0.01TS. The initial
temperature is 0.1. A constant heatithdj/dl = 5 is imposed on four boundaries of the
simulation domain. Heré is a space coordinate normal to a boundary. The size of time
steps isAt = 1074, and the maximum value of the parameterA2/(Ax)? in each time
step is about B1 x 10°. Figure 11 gives the temperature at four instants. Since the therm:
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FIG.9. The convergence rate for a system composed of two kinds of material, each of which has a temperatt
dependent thermal diffusivityr (T) =10*(1+0.01T?) in the center ®5<x <0.75 and 025<y <0.75,
k(T)=1,+0.1T% +0.01T® in the remaining partAt = 0.01. The maximum value of @At/(AX)? is
3.37728x 1C°. The dashed and solid lines are respectively obtained from the red—black and multigrid met
ods.

FIG.10. The solution fortemperature for a system composed of two kinds of material after one timé step
0.0%; «(T) = 10°(1+0.01T?) inthe center 25 < x < 0.75and 25 < y < 0.75, andc(T) = 1+0.1T*+0.01T*®
in the remaining part.
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FIG.11. Thetemperature atfourinstants under a constant heating from four boundaries. The thermal diffusi
tiesin the inner, middle, and outer regions in the simulation domain are, respeatiiely= 10°+-100T2, x(T) =
104 0.1T8, andk(T) = 1+ 0.1T* 4 0.01T®. The maximum value of the parameter/2t/(Ax)? in each time
step is about B1 x 1C°.

diffusivity in the inner partis very high, the time step10~*) is so large that the temperature
is almost uniform in the inner region after each time step. In order to display the structu
near interfaces between two kinds of material, we give Fig. 12, which shows the functic
tanh ). Hereé = 10(T — 0.2538. We would like to point out that the size of the time step
in any explicit scheme is limited by the largest valuec¢T ) in the simulation domain, no
matter whether or not the region with largest ) has been influenced yet.

6. CONCLUSIONS AND DISCUSSIONS

In this paper we have developed a finite difference scheme for nonlinear heat transfer.’
have demonstrated that the scheme provides goods results in a wide variety of situatic
Accurate solutions can be obtained for time-dependent problems as well as steady ste
The scheme possesses a number of features: second-order accurate in both space anc
iterative and fast in convergence, conservative, accurate in the treatment of nonlinearit



76 DAl AND WOODWARD

FIG. 12. The function of tanh[10T — 0.2538)] at the four instants.

and multikinds of material, able to quickly damp numerical errors for large time steps, ar
capable of solving a system composed of more than one kind of material. The algorithm
the scheme may be easily vectorized. The scheme may be used to study the heat trar
problems involved in laser fusion, and the approach developed in this paper may be app
to the radiative heat transfer in radiative hydrodynamics.

A more general equation for heat transfer, i.e.,

aT A
pp(T) o = V- [A(MVT] =8), (37)

may be changed into the form

IE(T)
at

— V- [MT)VT] = &T). (38)

In Eq. (37),p is a mass density of a material, is a specific heat andl is a thermal
conductivity. In Eq. (38)E(T) is the integral ofoc,(T). If we write E(T) asE(T) =
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o(T)T, from Eqg. (38), we have

oNTN + AT = To+ Q" (39)
1 npw H o SoH\TH SaH _ Lan
—IBNT SR TH =To+ 2QM — 2N, 4
2P —i—(a +5P o+,Q"-7Q (40)

Here N =0(TN) and oM =0 (TH). Equations (39), (40) are exactly the same as
Egs. (24), (25), except farN ando ™ which are replaced by a unity in Egs. (24), (25).
Equations (39), (40) may be similarly treated as Egs. (24), (25), and the multigrid methc
may be implemented for Egs. (39), (40), too.
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